Docker on Yarn on Azure HDInsight
Feb 17, 2023
devtip , docker , yarn , azure , hdinsight
Azure HDInsight uses it's own distribution of open source software (Hadoop, Spark, Hive, Livy etc) that forked from HDP. Though it's mostly based on open source, there are some fine nuances:
1. HDInsight versions don't exactly map to an open source release: HDInsight team picks up a release version from open source, applies it's own private patches and components including some additional commits (for fixes or improvements) from other open source branches to create
a release.
2. HDInsight clusters have HDI specific components that are required for smooth functioning with other Azure services.
This post covers few tricks for running Docker based workloads on Yarn on an HDInsight cluster. For this post, we will stick to running pi
example that is shipped on the HDInsight clusters but run it inside a docker container.
Pre-requisite
- Create an HDInsight cluster (Hadoop 3.1.0 or Spark 3.1) with one worker node.
PS: Keeping it to one worker node gives more control on where the containers get created and that means it's easier to debug should things go wrong.
All the steps in this post, can be completed from the workernode itself. First ssh to one of the headnodes and from there ssh to the workernode to follow the steps below
Prepare the cluster for running Docker workload
Install Docker on the worker node.
Run following script either using custom script action or by sshing to the node directly as $ sudo bash -x install_docker.sh
#!/bin/bash # install_docker.sh set -e sudo apt-get -y remove docker docker-engine docker.io containerd runc sudo apt-get -y update sudo apt-get -y install \ ca-certificates \ curl \ gnupg \ lsb-release sudo rm -rf /etc/docker /var/lib/docker /run/docker.sock /etc/systemd/system/docker.service.d curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg echo \ "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null sudo apt-get update sudo apt-get -y autoremove sudo apt-get -y autoclean sudo apt-get -y install docker-ce docker-ce-cli containerd.io sudo usermod -aG docker sshuser sudo service docker restart sudo chmod 666 /var/run/docker.sock # Verify that we have a working docker setup now. docker run hello-world
Configure Yarn for running Docker workloads
HDInsight ships with a nifty script called AmbariHelper
on all the nodes for automating interactions with Ambari. We will use AmbariHelper
to configure Yarn in this step by running following python script as $ sudo python configure_docker_on_yarn.py
Copying the following formatted script ends up giving some whitespaces in container-executor.cfg
. Before running the python script below, please make sure to remove whitespaces from those empty lines before section headers [docker]
, [gpu]
and [cgroups]
in the script; otherwise container-executor
will complain about invalid configuration
# /usr/bin/python # configure_docker_on_yarn.py import sys from datetime import datetime from hdinsight_common.AmbariHelper import AmbariHelper ambari_helper = AmbariHelper() current_ts=datetime.today().strftime('%Y_%m_%d_%H_%M_%S') new_yarn_config = { "yarn.nodemanager.container-executor.class": "org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor", "yarn.nodemanager.linux-container-executor.group": "hadoop", "yarn.nodemanager.linux-container-executor.nonsecure-mode.limit-users": "false", "yarn.nodemanager.runtime.linux.allowed-runtimes": "default,docker", "yarn.nodemanager.runtime.linux.docker.allowed-container-networks": "host,none,bridge", "yarn.nodemanager.runtime.linux.docker.default-container-network": "host", "yarn.nodemanager.runtime.linux.docker.host-pid-namespace.allowed": "false", "yarn.nodemanager.runtime.linux.docker.privileged-containers.allowed": "false", "yarn.nodemanager.runtime.linux.docker.privileged-containers.acl": "", "yarn.nodemanager.runtime.linux.docker.capabilities": "CHOWN,DAC_OVERRIDE,FSETID,FOWNER,MKNOD,NET_RAW,SETGID,SETUID,SETFCAP,SETPCAP,NET_BIND_SERVICE,SYS_CHROOT,KILL,AUDIT_WRITE", "yarn.nodemanager.runtime.linux.docker.delayed-removal.allowed": "true", "yarn.nodemanager.delete.debug-delay-sec": "900" } # Apply the configurations to yarn-site ambari_helper.update_latest_service_config("yarn-site", "YARN", "update_yarn_site_for_docker_" + current_ts, new_yarn_config) container_executor_cfg=""" yarn.nodemanager.local-dirs=/mnt/resource/hadoop/yarn/local yarn.nodemanager.log-dirs=/mnt/resource/hadoop/yarn/log yarn.nodemanager.linux-container-executor.group=hadoop banned.users=hdfs,yarn,mapred,bin min.user.id=1000 [docker] module.enabled=true docker.binary=/usr/bin/docker docker.allowed.capabilities=CHOWN,DAC_OVERRIDE,FSETID,FOWNER,MKNOD,NET_RAW,SETGID,SETUID,SETFCAP,SETPCAP,NET_BIND_SERVICE,SYS_CHROOT,KILL,AUDIT_WRITE docker.allowed.devices= docker.allowed.networks=host,none,bridge docker.allowed.ro-mounts=/etc/passwd,/etc/group,/mnt/resource/hadoop/yarn/local,/usr/lib/hdinsight-common docker.allowed.rw-mounts=/mnt/resource/hadoop/yarn/local,/mnt/resource/hadoop/yarn/log docker.privileged-containers.enabled=false docker.trusted.registries=local docker.allowed.volume-drivers= [gpu] module.enabled=false [cgroups] root=/sys/fs/cgroup yarn-hierarchy=yarn """ container_executor_properties = { "content": container_executor_cfg } # Update container-executor.cfg ambari_helper.update_latest_service_config("container-executor", "YARN", "update_container_executor_configs_" + current_ts, container_executor_properties) # Restart all services so the new configurations take effect. request_id=ambari_helper.restart_all_stale_services() if request_id: ambari_helper.wait_for_request_completion(request_id, 600, 60) else: print("Failed to restart all stale services")
Verify that container-executor.cfg
is looking good
HDP_VERSION=$(hdp-select status hadoop-yarn-nodemanager | awk '{print $3}') sudo -u yarn /usr/hdp/${HDP_VERSION}/hadoop-yarn/bin/container-executor --checksetup && echo "Successful!"
Set up a container image locally on the worker node
We will use the following as our Dockerfile
FROM adoptopenjdk/openjdk8 RUN apt-get update -qq > /dev/null \ # Required for hadoop && apt install -y libsnappy-dev \ # Useful tools for debugging/development && apt install -y wget vim telnet lsof # Required to match the user on HDI to the user on the container image # These values can be found by running "id" on one of the nodes RUN DOCKER_USER=sshuser \ && DOCKER_USER_GROUP=sshuser \ && DOCKER_USER_UID=2020 \ && DOCKER_USER_GID=2020 \ && mkdir -p /home/${DOCKER_USER} \ && groupadd --gid ${DOCKER_USER_GID} ${DOCKER_USER_GROUP} \ && useradd --uid ${DOCKER_USER_UID} --gid ${DOCKER_USER_GID} --shell /bin/bash --home-dir /home/${DOCKER_USER} ${DOCKER_USER} \ && chown ${DOCKER_USER}.${DOCKER_USER_GROUP} /home/${DOCKER_USER}
Now build a container image that we are going to call local/adoptopenjdk8
, in production this could be coming from other repositories that are specifically configured and allowed
in container-executor.cfg
(see above).
$ ls -l adoptopenjdk8/ total 4 -rw-rw-r-- 1 sshuser sshuser 643 Feb 17 19:01 Dockerfile $ docker build -t local/adoptopenjdk8 adoptopenjdk8/
Verify that local image works
$ docker run -it local/adoptopenjdk8 bash -c "java -version"
Run pi
job from mapreduce examples on the cluster
Run following:
YARN_JAR=/usr/hdp/current/hadoop-mapreduce-client/hadoop-mapreduce-examples.jar DOCKER_IMAGE=local/adoptopenjdk8 MOUNTS="/usr/lib/hdinsight-common:/usr/lib/hdinsight-common:ro" DOCKER_ENV_VARS="YARN_CONTAINER_RUNTIME_TYPE=docker,YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=${DOCKER_IMAGE},YARN_CONTAINER_RUNTIME_DOCKER_DELAYED_REMOVAL=true,YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS=${MOUNTS}" yarn jar ${YARN_JAR} pi \ -Dmapreduce.job.maps=1 -Dmapreduce.map.maxattempts=1 -Dmapreduce.map.env=${DOCKER_ENV_VARS} \ -Dmapreduce.job.reduces=1 -Dmapreduce.reduce.maxattempts=1 -Dmapreduce.reduce.env=${DOCKER_ENV_VARS} \ 1 40000
In the end we should see something like below:
... Number of Maps = 1 Samples per Map = 40000 Wrote input for Map #0 Starting Job 23/02/17 19:15:12 INFO client.RequestHedgingRMFailoverProxyProvider: Created wrapped proxy for [rm1, rm2] ... 23/02/17 19:15:14 INFO mapreduce.Job: Running job: job_1676659631798_0055 23/02/17 19:15:32 INFO mapreduce.Job: Job job_1676659631798_0055 running in uber mode : false 23/02/17 19:15:32 INFO mapreduce.Job: map 0% reduce 0% 23/02/17 19:15:39 INFO mapreduce.Job: map 100% reduce 0% 23/02/17 19:15:45 INFO mapreduce.Job: map 100% reduce 100% 23/02/17 19:15:47 INFO mapreduce.Job: Job job_1676659631798_0055 completed successfully 23/02/17 19:15:47 INFO mapreduce.Job: Counters: 53 ... Estimated value of Pi is 3.14140000000000000000
In this post, we ran a simple pi job on docker containers on yarn.